**Original Research** 

# N<sub>2</sub>O Abatement over Ruthenium Supported on Highly Dispersed Hydrotalcite-Like Composite Metal Oxides

# Yuanyang Zhang, Yaqiong Guo, Na Li, Yaoyu Feng\*

School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China

> Received: 7 June 2018 Accepted: 8 September 2018

#### Abstract

Highly dispersive hydrotalcite-like composite metal oxides were prepared by coprecipitation method.  $CO_2$ -TPD characterization showed that the adsorption capacity over the samples at low (<300°C) and middle (300~550°C) temperatures was improved by using La or Cu to modify the sample of MgAlO, while slightly reduced at high temperature (>550°C). The experimental results showed that the composite metal oxide,  $Me_xO_y$  (Me=La, Mg, Al), had relatively good performance on N<sub>2</sub>O decomposition. A series of Ru/Me<sub>x</sub>O<sub>y</sub> catalysts were prepared by programed impregnation method.  $CO_2$ -TPD analysis indicated that the samples of Ru/Me<sub>x</sub>O<sub>y</sub> not only increased the total  $CO_2$  adsorption capacity, but also obviously enhanced  $CO_2$  adsorption capacity at 300~550°C compared with  $Me_xO_y$ . TEM characterization showed that the suitable Ru loading on support surface under nanoscale. N<sub>2</sub>O catalytic decomposition showed that the suitable Ru loading on support was 2.0(wt.)%, i.e., Ru(2.0)/Me<sub>x</sub>O<sub>y</sub>. Under conditions of (v/v) 10% N<sub>2</sub>O+82% N<sub>2</sub>+5.0% O<sub>2</sub>+3.0% H<sub>2</sub>O, 30000h<sup>-1</sup> of space velocity, 510°C, the stability test showed that N<sub>2</sub>O conversion remained *ca*. 95.0%, indicating that Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> had good stability and activity at relatively low temperature.

**Keywords**: N<sub>2</sub>O abatement; composite metal oxides; hydrotalcite-like structure; coprecipitation; programmed impregnation

# Introduction

It has been reported that the global warming potential of  $N_2O$  is approximately 300 times higher than that of  $CO_2$ , and  $N_2O$  also shows a long lifetime in the atmosphere (almost 150 years). In addition, its potential for depleting the stratospheric ozone layer is comparable to that of hydrochlorofluorocarbons

(HCFCs), known as the most important ozone-depleting agents [1,2]. However, the average rate of increase of the N<sub>2</sub>O levels in the atmosphere is still approximately 0.2~0.3% annually, which is mainly caused by human activity, such as adipic and nitric acid plants as well as fuel combustion processes, especially after the 1980s [3-5]. Therefore, more research has not only paid much attention to the study of the effects of N<sub>2</sub>O on the environment and human body, but also has focused on the effective control of N<sub>2</sub>O emissions from stationary and mobile processes [6-9]. Several technologies have been potentially developed for N<sub>2</sub>O abatement,

<sup>\*</sup>e-mail: proffengyy@126.com

including thermal decomposition (TDeN<sub>2</sub>O) [10], nonselective catalytic reduction (NCR) [11], selective catalytic reduction (SCR) [12, 13], and direct catalytic decomposition (DeN<sub>2</sub>O) [14]. In addition, techniques using N<sub>2</sub>O as an oxidant to catalyze benzene to phenol (OBPh) are also very interesting [15]. However, it is believed that the DeN<sub>2</sub>O approach is the most promising method due to its efficiency and low energy requirements.

Various catalytic systems such as transition and noble catalysts, perovskites, spinels and zeolites have been widely reported [16-21]. Yentekakis et al. [22] used iridium as a catalytic component and it was supported on a variety of surfaces, e.g., y-Al<sub>2</sub>O<sub>3</sub> and composites of gadolinia-ceria, alumina-ceria-zirconia, indicating that the composites exhibited high resistance of the iridium nanoparticles to sintering in an oxidative environment, and that the catalytic behavior was consistent with the independently measured sintering characteristics, while Lin et al. [23] reported that the Ir/Al<sub>2</sub>O<sub>2</sub> sample exhibited excellent performance in initiating the decomposition of N<sub>2</sub>O at a low temperature of 200°C. Abu-Zied et al. [24] recently indicated that the samples of rare earth (Nd, Pr, Tb and Y) doped NiO prepared by the calcination of their corresponding oxalate mixtures, which were synthesized via the microwave-assisted precipitation method, had led to an obvious decrease of the NiO crystallites size, and it was the origin of a substantial activity increase upon doping NiO with the various rare earth oxides. Basahel et al. [25] showed that the addition of a small amount of ZrO, to Zn/Co-mixed spinel could improve its activity on N<sub>2</sub>O decomposition, which could be ascribed to the fact that Zr4+-doped samples not only stabilized the ZnCo<sub>2</sub>O<sub>4</sub> phase and suppressed the formation of the ZnO phase at the temperatures from 550°C to 750°C, but is also related to the increased Co<sup>2+</sup>/Co<sup>3+</sup> redox couple content. Its activity could be further improved by a suitable addition of CeO<sub>2</sub> to Zn-Co-O mixed oxide, which could be the reason for the eventual promotion of the reduction of Co<sup>3+</sup> to Co<sup>2+</sup> [26]. Eom et al. [27] indicated that various forms of cobalt oxide ( $Co_2O_4$  and  $Co_2O_2$ ) as well as modified with alkali metal (10% Na) and alkaline earth metal (10% Ba) were inactive for N<sub>2</sub>O decomposition, while these samples became very active for N<sub>2</sub>O decomposition when reduced under reduction media (H<sub>2</sub> gas), probably due to the oxidation state change of cobalt oxides during the reduction process. However, Kim et al. [28] found that an alkali metal modified sample  $(K/Co_{2}O_{4})$ showed notable activity on N<sub>2</sub>O decomposition, and its performance could be further improved with the suitable addition of CeO<sub>2</sub> (K/Co-CeO<sub>2</sub>). Zhang et al. [29] used potassium or sodium oxide to modify the Zn/ Mg-Co catalyst and found that the catalyst activity for N<sub>2</sub>O decomposition was improved. Characterization indicated that the addition of potassium or sodium oxide decreased the binding energy and resulted in an increase in the density of the electron cloud around Co and an improvement of catalytic activity. Grzybek et

al. [30] found that the (Co, Zn)Co<sub>2</sub>O<sub>4</sub>/CeO<sub>2</sub>/cordierite catalyst prepared by the impregnation method gave good performance for N<sub>2</sub>O decomposition with the help of dispersion of the active spinel phase over the cordierite. Zabilskiy et al. [31] recently reported the performance of a series of CuO/CeO<sub>2</sub> catalysts prepared by impregnation method for N<sub>2</sub>O decomposition. It was found that the sample containing 10(wt.)% of Cu showed the best activity on N<sub>2</sub>O degradation, which could be attributed to the highest number of small CuO clusters on the catalyst surface and the synergistic interaction between copper and ceria [32]. The catalyst activity, however, was found to be degraded in the presence of small amounts of oxygen and water vapor in the feed stream [33]. Zheng et al. [34] used zinc oxide to replace CeO<sub>2</sub> and supported ZnAl<sub>2</sub>O<sub>4</sub>, indicating that Cu-Zn/ ZnAl<sub>2</sub>O<sub>4</sub> showed higher catalytic performance along with good stability during N2O decomposition by using the mixture (v/v) 8.1% N<sub>2</sub>O+10.2% O<sub>2</sub>+balanced N<sub>2</sub> at atmosphere. Liu et al. [35] reported that the mixed metal oxides with molar ratio of Ni/Ce by 8.0/1.0, denoted Ni<sub>s</sub>Ce<sub>1</sub>, prepared by hydrothermal method showed good activity and stability on N<sub>2</sub>O decomposition at 450°C by using the model mixtures (v/v) 0.2% N<sub>2</sub>O+2.0% O<sub>2</sub>+balanced He.

The studies of the various N<sub>2</sub>O decomposition catalysts described above have mostly focused on the use of transition metal oxides as the main catalytic components, which were usually modified by using alkali and alkaline earth metals or rare-earth metals. Catalysts related to Co-Me (Me = Zn, Cu, Ce) or Cu-Ce have been mostly investigated. However, due to the cobalt's negative effect on the environment during the process of industrial catalyst manufacturing as well as the degradation of the Cu-Ce catalyst activity in the presence of oxygen and water vapor in the feed stream, it is still interesting and challenging to explore novel catalysts potentially applying for effective catalytic N<sub>2</sub>O decomposition. This paper reports that the high dispersive hydrotalcite-like composite metal oxides,  $Me_vO_v$  (Me = La, Mg, Al), modified with Ru oxides by using programmed impregnation method, show good stability and activity at relatively low temperature, which provides the basis for further pilot-scale study for potential application in industries.

### **Material and Methods**

# Sample Preparation

The high dispersive hydrotalcite-like composite metal oxides were prepared by coprecipitation method. A prepared solution containing Na<sub>2</sub>CO<sub>3</sub> and NaOH was added dropwise to a solution containing known amounts of Al(NO<sub>3</sub>)<sub>3</sub>, Mg(NO<sub>3</sub>)<sub>2</sub>, Cu(NO<sub>3</sub>)<sub>2</sub>, Zn(NO<sub>3</sub>)<sub>2</sub>, Zr(NO<sub>3</sub>)<sub>4</sub>, Mn(NO<sub>3</sub>)<sub>2</sub> or La(NO<sub>3</sub>)<sub>3</sub> (C.P. grade, China) under stirring at ca. 70°C until the pH of the solution reached ca. 9.0. The resulting precipitate was aged at 70~90°C

overnight, and then filtered, washed with distilled water until the pH of the filtrate was ca. 7.0, and dried at 105°C overnight, followed by calcination in a muffle furnace for 4~6h at 530°C in static air. Afterward, a series of ruthenium-supported catalysts were prepared by using the suitable hydrotalcite-like composite metal oxide as the support and programmed impregnation method, in which the RuCl<sub>3</sub>.xH<sub>2</sub>O (C.P. grade, China) was used as the precursor of Ru active component.

#### Characterization

The specific surface area and pore structure of the prepared samples were analyzed at -196°C over a range of relative pressures through nitrogen adsorptiondesorption isotherms performed on an automated ASAP 2020 instrument (Micromeritics Corporation, USA). The compositions of catalytic components for typical samples were analyzed by inductively coupled plasmaatomic emission spectroscopy (ICP-AES) (Varian 710-ES, USA). Fourier transform infrared spectra (FT-IR) were performed on Nicolet NEXUS 470 (USA) spectrometer equipped with a DTGS detector. Structural characterization via X-ray diffractometry (XRD) was performed on a computerized Rigaku D/max-RB diffractometer (Japan, CuK $\alpha$  radiation,  $\lambda = 0.154$  nm, 50 kV, 40 mA) over a 20 range of  $5 \sim 80^{\circ}$  with a step of 4°/min. The surface morphology (SEM) of the samples was characterized by using an FEI Quanta 400 FEG ESEM (15kV) electron microscope (USA), and an energy dispersive spectrometer (EDS) was used to confirm the nature of the components on the surface. The typical supported Ru samples were characterized by using the transmission electron microscopy (TEM) (Japanese, JEM-2010HR, operated at 200kV). The physicochemical properties of the sample surface were determined by using a TP-5080 multi-functional automatic adsorption instrument (China) with CO, temperature-programmed desorption (CO<sub>2</sub>-TPD). A particle size analyzer of S3500-BWD (Microtrac, USA) was also used to identify the particle size distribution of composite metal oxides prepared by coprecipitation method.

#### Activity Evaluation

The experiments on catalytic N<sub>2</sub>O abatement were carried out in a laboratory fixed-bed micro reactor

using approximately 1.0 g of catalyst for each test. Before testing, the sample loaded in the reactor was pretreated with a mixture of N<sub>2</sub> and O<sub>2</sub> at 500°C for approximately 1.0h to yield a clean surface. Then the temperature of the reactor was controlled at the testing temperature. Afterward, the reactant mixture containing N<sub>2</sub>O with an hourly space velocity in the range of 10000~40000 h<sup>-1</sup> was used to evaluate the sample performance on N<sub>2</sub>O decomposition. The reaction system was maintained for 1 h at each reaction temperature so that the system could reach a steady state to obtain reliable N<sub>2</sub>O conversion data. The tested temperature range was varied from 150°C to 700°C for each sample. The composition of the outlet mixture was analyzed by an online gas chromatograph (GC-2010 PLUS, Shimadzu, Japan) equipped with HP-PLOT/Q capillary columns (30 m  $\times$  0.32 mm  $\times$  20  $\mu m)$  and an ECD detector. The catalyst performance was expressed as N<sub>2</sub>O conversion under the applied experimental conditions, which was calculated based on the N<sub>2</sub>O concentrations at the inlet and outlet, respectively.

#### **Results and Discussion**

#### Hydrotalcite-Like Composite Metal Oxides

# BET and ICP Characterization

The composition, specific surface area and average pore size characterized by BET and ICP over the composite metal oxides prepared by coprecipitation method are listed in Table 1, which indicates that the molar composition of the active components of the prepared samples were close to the designed value. The specific surface area and pore size for all samples was ca. 50 m<sup>2</sup>/g and 8~12 nm, respectively. In addition, the distribution of particle size measured by laser particle size analyzer for the precursors prepared by coprecipitation method was ca. 0.8~2  $\mu$ m under applied preparation conditions.

#### FT-IR Characterization

FT-IR characterization over LaMgAlO samples before and after calcination prepared by the precipitation method are shown in Fig. 1. This indicated

Table 1. ICP and BET results over samples prepared by coprecipitation method.

| Samples | Calcined temperature<br>(°C) | ICP                         | BET                              |                |
|---------|------------------------------|-----------------------------|----------------------------------|----------------|
|         |                              | Molar composition           | Surface area (m <sup>2</sup> /g) | Pore size (nm) |
| MgAlO   | 530                          | Mg/Al≈3.0                   | 48                               | 8.6            |
| CuMgAlO | 530                          | Cu/(Cu+Mg+Al)≈0.1           | 39                               | 11             |
| ZrMnZnO | 530                          | $Zr/(Zr+Mn+Zn) \approx 0.1$ | 45                               | 12             |
| LaMgAlO | 530                          | La/(La+Mg+Al) ≈0.1          | 51                               | 9.8            |



Fig. 1. FT-IR characterization of LaMgAlO precursor before and after calculations at high temperature.

that the characteristic peaks for the sample before calcination mainly appeared in 3400 cm<sup>-1</sup>, 1630cm<sup>-1</sup>, 1350 cm<sup>-1</sup>, 750 cm<sup>-1</sup>, 630 cm<sup>-1</sup>, 530 cm<sup>-1</sup> and 430 cm<sup>-1</sup>. The wide characteristic peak ca. 3400 cm<sup>-1</sup> belonged to the stretch and flexural vibration of the water molecule at interlayer, and the characteristic peak ca. 1600cm<sup>-1</sup> belonged to the bending vibration of OHfor the crystallized water, and 1350cm<sup>-1</sup> characteristic peak was attributable to the C-O asymmetric stretch vibration of CO32-, indicating that it was shifted to the low wave number compared with the free OH<sup>-</sup> (ca. 3600 cm<sup>-1</sup>) and  $CO_3^{2-}$  (1430 cm<sup>-1</sup>), which was probably a result of the interaction between the crystallized water and CO<sup>2-</sup> at interlayer of the hydrotalcite-like structure. Furthermore, the characteristic peaks among the region of 700~400 cm<sup>-1</sup> belonged to M-O vibration of the composite metal oxides. Similar characteristic peaks appeared in the sample calcinated at 530°C, which indicated that the LaMgAlO sample prepared by precipitation method after calcination also remained the hydrotalcite-like structure. However, it showed that the characteristic peaks over calcinated LaMgAlO sample appeared in ca. 1600 cm<sup>-1</sup> for OH<sup>-</sup> of the crystallized water and ca. 1350 cm<sup>-1</sup> for C-O of CO<sub>2</sub><sup>2-</sup> were obviously weakened compared with the sample before calcination, respectively, which indicated that although the samples before and after calcination remained somewhat similar while the microstructure and composition of the samples had been changed, the physical and chemical properties of the samples would also be different. In addition, the other samples prepared by the coprecipitation method also showed similar results to the LaMgAlO sample.

#### XRD Characterization

XRD characterization over the prepared samples is shown in Fig. 2, which indicates that the spinel diffraction peak of MgAl<sub>2</sub>O<sub>4</sub> appeared in the MgAlO



Fig. 2. XRD characterization results over samples prepared by co-precipitation method.

sample besides the main diffraction peak of MgO and  $Al_2O_3$ . The diffraction peak of  $CuAl_2O_4$  spinel structure appeared in the CuMgAlO sample calcinated at 530°C. With respect to ZrMnZnO and LaMgAlO samples, the obtained results indicated that it only showed characteristic peaks of single metal oxides, i.e.,  $ZrO_2$ ,  $Mn_2O_3$ , ZnO, or  $La_2O_3$ , respectively, without composite spinel structure formed when calcinated at 530°C under used preparation conditions.

#### CO,-TPD Characterization

 $CO_2$ -TPD characterization showed that the adsorbed  $CO_2$  on the surface of the composite metal oxides could be divided into three states: temperature below 300°C (<300°C), middle temperature (300~550°C), and temperature above 550°C (>550°C) (Fig. 3). This indicates that the surface over MgAlO sample



Fig. 3. CO<sub>2</sub>-TPD characterization over samples prepared by coprecipitation method.



Fig. 4. Comparison of  $N_2O$  conversion over samples prepared by coprecipitation method.

appeared in a relatively strong desorbed  $CO_2$  characteristic peak at high temperature above 550°C, while the characteristics of surface alkaline would be inevitably changed by using metal oxides of  $La_2O_3$  or  $Cu_2O/CuO$  to modify the sample of MgAlO under applied preparation conditions, indicating that the modified samples (CuMgAlO, LaMgAlO) had enhanced its adsorbed ability on  $CO_2$  at low temperature while being weakened at high temperature, respectively. However, the sample of ZrMnZnO showed a relatively weak wide characteristic peak in the temperature range of 300~600°C, probably indicating the interaction among various active components on the sample.

# N,O Decomposition

Fig. 4 showed the N<sub>2</sub>O conversion over different hydrotalcite-like composite metal oxides under the following experimental conditions, gas mixture (v/v) 37% N<sub>2</sub>O+40% N<sub>2</sub>+20% O<sub>2</sub>+3.0% H<sub>2</sub>O, 10000 h<sup>-1</sup> of space velocity. This indicated that the activity was not very different when the reaction temperature was below 500°C, while its activity had been improved when samples modified with different active components compared with the MgAlO sample when the reaction



Fig. 5. TEM characterization of  $Me_xO_y$  sample supported with ruthenium calcined at 380°C.

temperature was above 500°C. The activity order over samples was followed by LaMgAlO>ZrMnZnO >CuMgAlO>MgAlO under applied experimental conditions, which was basically consistent with the variation of surface alkaline characteristics (Fig. 3). In addition, the stability test over the LaMgAlO sample indicated that it had relatively good activity and stability under applied experimental conditions, 10000 h<sup>-1</sup> of space velocity, reaction temperature of 600°C, the same reactant gas mixture as above, and lasted for 120 h, which provided the theoretical and experimental basis for further research on improving sample activity.

# Preparing Ru/Me<sub>x</sub>O<sub>y</sub> Catalysts

The above results showed that the hydrotalcitelike composite metal oxide, LaMgAlO ( $Me_xO_y$ ), had relatively good performance on N<sub>2</sub>O decomposition, while its activity on N<sub>2</sub>O decomposition was not good enough under used experimental conditions. Therefore, a series of Ru/Me<sub>2</sub>O<sub>y</sub> catalysts were prepared by

| Complex                                  | Calcined temperature<br>(°C) | ICP              | BET                              |                |
|------------------------------------------|------------------------------|------------------|----------------------------------|----------------|
| Samples                                  |                              | Ru content (wt%) | Surface area (m <sup>2</sup> /g) | Pore size (nm) |
| Ru (0.5)/ Me <sub>x</sub> O <sub>y</sub> | 380                          | 0.5              | 48                               | 9.5            |
| Ru (1.0)/ Me <sub>x</sub> O <sub>y</sub> | 380                          | 1.0              | 46                               | 9.4            |
| Ru (1.5)/ Me <sub>x</sub> O <sub>y</sub> | 380                          | 1.5              | 45                               | 9.6            |
| Ru (2.0)/ Me <sub>x</sub> O <sub>y</sub> | 380                          | 2.0              | 43                               | 8.9            |
| Ru (3.0)/ Me <sub>x</sub> O <sub>y</sub> | 380                          | 3.0              | 43                               | 9.1            |
|                                          |                              |                  |                                  |                |

Table 2. ICP and BET results over ruthenium-supported samples.



Fig. 6. Effect of Ru loadings on  $N_2O$  decomposition over supported Ru/Me<sub>x</sub>O<sub>y</sub> catalysts.

programmed impregnation method in order to further improve its activity on N<sub>2</sub>O decomposition.

#### ICP and BET Analysis

ICP and BET results over Ru/Me<sub>x</sub>O<sub>y</sub> samples were listed in Table 2, which indicated that the loading of Ru on the Me<sub>x</sub>O<sub>y</sub> support was in the range of 0.5~3.0 (wt)%. BET analysis indicated that the specific surface area of Ru/Me<sub>x</sub>O<sub>y</sub> samples was slightly decreased with the increase of the loading Ru on the support, indicating the influence of the supported catalyst on the pore structure of the support, Me<sub>x</sub>O<sub>y</sub>, was not obvious by using the programmed impregnation method.

#### TEM Characterization

TEM characterization over 2.0(wt)% Ru/Me<sub>x</sub>O<sub>y</sub> sample, i.e., Ru(2.0)/Me<sub>x</sub>O<sub>y</sub>, calcinated at 380°C was shown in Fig. 5, which showed that the Ru component was uniformly loaded on the support surface under nanoscale, indicating that the preparation method was suitable and could fully make use of the ruthenium active component on N<sub>2</sub>O abatement.



Fig. 7.Variation of  $N_2O$  conversion over Ru (2.0)/Me<sub>x</sub>O<sub>y</sub> catalyst as a function of time-on-stream.

#### Ru/Me<sub>v</sub>O<sub>v</sub> Performance on N<sub>2</sub>O Decomposition

Fig. 6 showed the variation of N<sub>2</sub>O conversion over Ru/Me<sub>x</sub>O<sub>y</sub> samples with Ru loadings on Me<sub>o</sub>, support under the following conditions: gas mixture (v/v) 37% N<sub>2</sub>O+40% N<sub>2</sub>+20% O<sub>2</sub>+3.0% H<sub>2</sub>O, 30000 h<sup>-1</sup> of space velocity, reaction temperature 450°C. This indicated that the activity of Ru/Me<sub>v</sub>O<sub>v</sub> samples was obviously increased with the loading of Ru when the content of Ru on support was below 2.0(wt)%, while the activity was not continuously increased when Ru loading was above 2.0(wt)% under applied experimental conditions, indicating that the suitable Ru loading on the hydrotalcite-like composite metal oxide, Me<sub>v</sub>O<sub>v</sub>, was ca. 2.0(wt)%, which not only made the prepared sample, Ru(2.0)/Me<sub>v</sub>O<sub>v</sub>, have good activity on N<sub>2</sub>O decomposition but also saved the cost of catalyst production for potential industrial applications.

Table 3 lists the results of CO<sub>2</sub>-TPD characterization over support,  $Me_xO_y$ , and these ruthenium-supported catalysts,  $Ru/Me_xO_y$ , respectively. Results indicated that the supported catalysts of  $Ru/Me_xO_y$  reduced the  $CO_2$  adsorption capacity at low temperature (<300°C), while obviously increasing at the middle temperature (300~550°C) and high temperature (>550°C) compared

Table 3. Basicity and its distribution over Ru/Me<sub>x</sub>O<sub>y</sub> samples compared with Me<sub>x</sub>O<sub>y</sub>.

| Committee.                               | Amount of total basic sites | Distribution of different basic sites (%) |           |        |
|------------------------------------------|-----------------------------|-------------------------------------------|-----------|--------|
| Samples                                  | (µmol g <sup>-1</sup> )     | <300°C                                    | 300~550°C | >550°C |
| Me <sub>x</sub> O <sub>y</sub> (support) | 129                         | 23.2                                      | 47.2      | 29.4   |
| Ru (0.5)/ Me <sub>x</sub> O <sub>y</sub> | 147                         | 9.5                                       | 55.7      | 34.6   |
| Ru (1.0)/ Me <sub>x</sub> O <sub>y</sub> | 166                         | 6.6                                       | 57.2      | 36.1   |
| Ru (1.5)/ Me <sub>x</sub> O <sub>y</sub> | 186                         | 4.3                                       | 58.1      | 37.6   |
| Ru (2.0)/ Me <sub>x</sub> O <sub>y</sub> | 224                         | 2.2                                       | 59.8      | 37.9   |
| Ru (3.0)/ Me <sub>x</sub> O <sub>y</sub> | 229                         | 1.7                                       | 58.9      | 39.3   |



Fig. 8. Comparison of surface morphology over Ru (2.0)/Me<sub>x</sub>O<sub>y</sub> sampls before and after reaction.

with the  $Me_xO_y$  sample. Furthermore, the total adsorbed  $CO_2$  capacity on the surface of  $Ru/Me_xO_y$  samples was obviously increased compared with the  $Me_xO_y$  sample, indicating that it was probably the origin of  $Ru/Me_xO_y$  catalysts that had good activity compared with the  $Me_xO_y$  sample under similar applied experimental conditions.

#### Stability Test over Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> Catalyst

Fig. 7 showed the stability result over Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> catalyst under the following applied conditions, gas mixture (v/v) 10% N<sub>2</sub>O+82% N<sub>2</sub>+5.0% O<sub>2</sub>+3.0% H<sub>2</sub>O, 30000 h<sup>-1</sup> of space velocity, and 510°C. It indicated that the Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> catalyst had good stability when the reactant mixture contained small amounts of oxygen and water vapor. The N<sub>2</sub>O conversion was stable and more than 95% during the period of stability test lasted for over 100h, which also implied that the Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> catalyst had good activity at low temperature. The preprimary results provided the basis on further pilot scale study for potential industrial applications.

### SEM Characterization over Samples before and after Reaction

SEM characterization over Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> catalysts before and after reaction is shown in Fig. 8, which indicates that the surface of the used Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> sample was slightly rough compared with the fresh Ru(2.0)/Me<sub>x</sub>O<sub>y</sub> sample, while it did not affect its activity on N<sub>2</sub>O decomposition under applied experimental conditions (Fig. 7), indicating that the prepared Ru(2.0)/ Me<sub>x</sub>O<sub>y</sub> catalyst had good stable structure when the reactant mixture contained small amounts of oxygen and water vapor.

# Conclusions

 $CO_2$ -TPD characterization over hydrotalcite-like composite metal oxides prepared by the coprecipitation method showed that the adsorption capacity over the

samples at low temperature (<300°C) and middle temperature (300~550°C) were improved by using La or Cu to modify the sample of MgAlO, while being slightly reduced at high temperature (>550°C). Results indicated that the LaMgAlO (Me<sub>v</sub>O<sub>v</sub>) sample had relatively good performance on N<sub>2</sub>O decomposition. A series of Ru/Me<sub>v</sub>O<sub>v</sub> catalysts were prepared programed impregnation method. CO<sub>2</sub>-TPD bv characterization showed that the samples of Ru/Me<sub>v</sub>O<sub>v</sub> not only increased total CO<sub>2</sub> adsorption capacity, but also obviously enhanced CO<sub>2</sub> adsorption capacity at 300~550°C compared with Me<sub>v</sub>O<sub>v</sub>. TEM characterization indicated that the Ru component was uniformly loaded on the support surface under nanoscale, indicating that the preparation method was suitable and could make full use of ruthenium active component on N<sub>2</sub>O abatement. Catalytic N<sub>2</sub>O decomposition showed that the suitable Ru loading on the support was 2.0(wt.)%, i.e., Ru(2.0)/Me<sub>x</sub>O<sub>y</sub>. The stability test showed that N<sub>2</sub>O conversion remained ca. 95.0%, indicating that Ru(2.0)/Me<sub>0</sub>, had good stability and activity at relatively low temperatures, which provided the basis for further pilot-scale study for potential industrial applications.

# **Conflict of Interest**

The authors declare no conflict of interest.

#### References

- SÁDOVSKÁ G., TABOR E., SAZAMA P., LHOTKA M., BERNAUER M., SOBALÍK Z. High temperature performance and stability of Fe-FER catalyst for N<sub>2</sub>O decomposition. Catal. Commun. 89, 133, 2017.
- 2. ABU-ZIED B. M., SOLIMAN S. A., ABDELLAH S. E. Enhanced direct N<sub>2</sub>O decomposition over  $Cu_xCo_{1-x}Co_2O_4$ ( $0.0 \le x \le 1.0$ ) spinel-oxide catalysts. J. Ind. Eng. Chem. 21, 814, 2015.
- 3. PARK S., CHOI J.H., PARK J. The estimation of N<sub>2</sub>O emissions from municipal solid waste incineration facilities: The Korea case. Waste Manage. **31**, 1765, **2011**.
- 4. MASSARA T.M., MALAMIS S., GUISASOLA A., AEZA J.A.B., NOUTSOPOULOS C., KATSOU E. A

review on nitrous oxide  $(N_2O)$  emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. **596-597**, 106, **2017**.

- CHIPPERFIELD M.P., BEKKI S., DHOMSE S., HARRIS N.R.P., HASSLER B., HOSSAINI R., STEINBRECHT W., THIÉBLEMONT R., WEBER M. Detecting recovery of the stratospheric ozone layer. Nature 549, 211, 2017.
- DHAL G.C., MOHAN D., PRASAD R. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NO<sub>x</sub> emissions: An overview. Catal. Sci. Technol. 7, 1803, 2017.
- REVELL L.E., TUMMON F., SALAWITCH R.J., STENKE A., PETER T. The changing ozone depletion potential of N<sub>2</sub>O in a future climate. Geophys. Res. Lett. 42, 10047, 2015.
- RAVISHANKARA A.R., DANIEL J.S., PORTMANN R.W. Nitrous oxide (N<sub>2</sub>O): The dominant ozone-depleting substance emitted in the 21<sup>st</sup> century. Science 326, 123, 2009.
- YU H.B., WANG X.P. Apparent activation energies and reaction rates of N<sub>2</sub>O decomposition via different routes over Co<sub>3</sub>O<sub>4</sub>. Catal. Commun. 106, 40, 2018.
- GALLE M., AGAR D.W., WATZENBERGER O. Thermal N<sub>2</sub>O decomposition in regenerative heat exchanger reactors. Chem. Eng. Sci. 56, 1587, 2001.
- PEREZ-RAMIREZ J., KAPTEIJN F., SCHOFFEL K., MOULIJN J.A. Formation and control of N<sub>2</sub>O in nitric acid production: Where do we stand today?. Appl. Catal. B: Environ. 44, 117, 2003.
- PINAEVA L.G., PROSVIRIN I.P., DOVLITOVA L.S., DANILOVA I.G., SADOVSKAYA E.M., ISUPOVA L.A. MeO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> and MeO<sub>x</sub>/CeO<sub>2</sub> (Me=Fe, Co, Ni) catalysts for high temperature N<sub>2</sub>O decomposition and NH<sub>3</sub> oxidation. Catal. Sci. Technol. 6, 2150, 2016.
- PEREZ-ALONSO F.J., MELIAN-CABRERA I., GRANADOS M.L., KAPTEIJN F., FIERRO J.L.G. Synergy of Fe<sub>x</sub>Ce<sub>1-x</sub>O<sub>2</sub> mixed oxides for N<sub>2</sub>O decomposition. J. Catal. 239, 340, 2006.
- HABER J., NATTICH M., MACHEJ T. Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition. Appl. Catal. B: Environ. 77, 278, 2008.
- LI L.L., MENG Q.L., WEN J.J., WANG J.G., TU G.M., XU C.H., ZHANG F.M., ZHONG Y.J., ZHU W.D., XIAO Q.X. Improved performance of hierarchical Fe-ZSM-5 in the direct oxidation of benzene to phenol by N<sub>2</sub>O. Microporous Mesoporous Mater. 227, 252, 2016.
- CHATZIIONA V.K., CONSTANTINOU B.K., SAVVA P.G., OLYMPIOU G.G., KAPNISIS K., ANAYIOTOS A., COSTA C.N. Regulating the catalytic properties of Pt/ Al<sub>2</sub>O<sub>3</sub> through nanoscale inkjet printing. Catal. Commun. **103**, 69, **2018**.
- PIETROGIACOMI D., CAMPA M.C., CARBONE L.R., TUTI S., OCCHIUZZI M. N<sub>2</sub>O decomposition on CoO<sub>x</sub>, CuO<sub>x</sub>, FeO<sub>x</sub> or MnO<sub>x</sub> supported on ZrO<sub>2</sub>: The effect of zirconia doping with sulfates or K<sup>+</sup> on catalytic activity. Appl. Catal. B: Environ. 187, 218, 2016.
- JABŁOŃSKA M., PALKOVITS R. It is no laughing matter: nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts. Catal. Sci. Technol. 6, 7671, 2016.
- AMROUSSE R., TSUTSUMI A., BACHAR A. Retracted article: A novel approach for N<sub>2</sub>O decomposition over Rhsubstituted hexaaluminate catalysts. Catal. Sci. Technol. 3, 576, 2013.

- DACQUIN J.P., DUJARDIN C., GRANGER P. Catalytic decomposition of N<sub>2</sub>O on supported Pd catalysts: Support and thermal ageing effects on the catalytic performances. Catal. Today 137, 390, 2008.
- BEYER H., EMMERICH J., CHATZIAPOSTOLOU K., KŐHLER K. Decomposition of nitrous oxide by rhodium catalysts: Effect of rhodium particle size and metal oxide support. Appl. Catal. A: Gen. 391, 411, 2011.
- 22. YENTEKAKIS I.V., GOULA G., PANAGIOTOPOULOU P., KAMPOURI S., TAYLOR M., KYRUAKOU G., LAMBERT R. Stabilization of catalyst particles against sintering on oxide supports with high oxygen ion lability exemplified by Ir-catalyzed decomposition of N<sub>2</sub>O. Appl. Catal. B: Environ. **192**, 357, **201**6.
- LIN J., PAN X.L., WANG X.D., CONG Y., ZHANG T., ZHU S.M. Catalytic decomposition of propellant N<sub>2</sub>O over Ir/Al<sub>2</sub>O<sub>3</sub> catalyst. AIChE J. 62, 3973, 2016.
- 24. ABU-ZIED B.M., BAWAKED S.M., KOSA S.A., ALI T.T., SCHWIEGER W., AQLAN F.M. Effects of Nd-, Pr-, Tb- and Y-doping on the structural, textural, electrical and N<sub>2</sub>O decomposition activity of mesoporous NiO nanoparticles. Appl. Surf. Sci. **419**, 399, **2017**.
- BASAHEL S.N., ABD EL-MAKSOD I.H., ABU-ZIED B.M., MOKHTAR M. Effect of Zr<sup>4+</sup> doping on the stabilization of ZnCo-mixed spinel system and its catalytic activity towards N<sub>2</sub>O decomposition. J. Alloys Compd. 493, 630, 2010.
- 26. YAN L., REN T., WANG X.L., GAO Q., JI D., SUO J.S. Excellent catalytic performance of Zn<sub>x</sub>Co<sub>1-x</sub>Co<sub>2</sub>O<sub>4</sub> spinel catalysts for the decomposition of nitrous oxide. Catal. Commun. 4, 505, 2003.
- EOM W.H., AYOUB M., YOO K.S. Catalytic decomposition of N<sub>2</sub>O at low temperature by reduced cobalt oxides. J. Nanosci. Nanotechno. 16, 4647, 2016.
- KIM M.J., LEE S.J., RYU I.S., JEON M.W., MOON S.H., ROH H.S., JEON S.G. Catalytic decomposition of N<sub>2</sub>O over cobalt based spinel oxides: The role of additives. Mol. Catal. 442, 202, 2017.
- ZHANG J.L., HU H., XU J., WU G.M., ZENG Z.W. N<sub>2</sub>O decomposition over K/Na-promoted Mg/Zn-Ce-cobalt mixed catalysts. J. Environ. Sci. 26, 1437, 2014.
- GRZYBEK G., STELMACHOWSKI P., INDYKA P., INGER M., WILK M., KOTARBA A., SOJKA Z. Cobaltzinc spinel dispersed over cordierite monoliths for catalytic N<sub>2</sub>O abatement from nitric acid plants. Catal. Today 257, 93, 2015.
- ZABILSKIY M., DJINOVIC P., ERJAVEC B., DRAZIC G., PINTAR A. Small CuO clusters on CeO<sub>2</sub> nanospheres as active species for catalytic N<sub>2</sub>O decomposition. Appl. Catal. B: Environ. 163, 113, 2015.
- LIU Z.M., HE C.X., CHEN B.H., LIU H.Y. CuO-CeO<sub>2</sub> mixed oxide catalyst for the catalytic decomposition of N<sub>2</sub>O in the presence of oxygen. Catal. Today 297, 78, 2017.
- 33. KONSOLAKIS M., CARABINEIRO S.A.C., PAPISTA E., MARNELLOS G.E., TAVARES P.B., AGOSTINHO MOREIRA J., ROMAGUERA-BARCELAY Y., FIGUEIREDO J.L. Effect of preparation method on the solid state properties and the deN<sub>2</sub>O performance of CuO-CeO, oxides. Catal. Sci. Technol. 5, 3714, 2015.
- 34. ZHENG X.Y., ZHANG R.H., BAI F., HUA C., WANG S.B., DUAN X.G. Catalytic decomposition of N<sub>2</sub>O over Cu-Zn/ZnAl,O<sub>4</sub> catalysts. Catalysts 7, 1, 2017.
- LIU Z.M., ZHOU Z.Z., HE F., CHEN B.H., ZHAO Y.Y., XU Q. Catalytic decomposition of N<sub>2</sub>O over NiO-CeO<sub>2</sub> mixed oxide catalyst. Catal. Today 293-294, 56, 2017.